GraphEm Rapids Documentation ============================ High-performance graph embedding using PyTorch and RAPIDS cuVS. Force-directed layout with geometric intersection detection. .. image:: https://img.shields.io/badge/License-MIT-blue.svg :target: https://opensource.org/licenses/MIT .. image:: https://img.shields.io/badge/python-3.8+-blue.svg :target: https://www.python.org/downloads/ .. image:: https://img.shields.io/badge/arXiv-2506.07435-b31b1b.svg :target: https://arxiv.org/abs/2506.07435 Features -------- * **Unified API**: Scipy sparse adjacency matrices, sklearn-style parameters * **Multiple Backends**: PyTorch (1K-100K vertices), RAPIDS cuVS (100K+ vertices) * **GPU Acceleration**: CUDA support, memory-efficient chunking, automatic CPU fallback * **Graph Generators**: Erdős-Rényi, scale-free, SBM, bipartite, Delaunay, and more * **Influence Maximization**: Fast embedding-based seed selection Quick Start ----------- Installation:: pip install graphem-rapids # PyTorch backend pip install graphem-rapids[cuda] # + CUDA pip install graphem-rapids[rapids] # + RAPIDS cuVS pip install graphem-rapids[all] # Everything Basic Usage:: import graphem_rapids as gr # Generate graph adjacency = gr.generate_er(n=1000, p=0.01) # Create embedder (automatic backend selection) embedder = gr.create_graphem(adjacency, n_components=3) # Run layout embedder.run_layout(num_iterations=50) # Get positions and visualize positions = embedder.get_positions() embedder.display_layout() Contents -------- .. toctree:: :maxdepth: 2 quickstart api backends generators examples Citation -------- .. code-block:: bibtex @misc{kolpakov-rivin-2025fast, title={Fast Geometric Embedding for Node Influence Maximization}, author={Kolpakov, Alexander and Rivin, Igor}, year={2025}, eprint={2506.07435}, archivePrefix={arXiv}, primaryClass={cs.SI}, url={https://arxiv.org/abs/2506.07435} } Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`