OpenCV Integration
The einit library is designed to work seamlessly with OpenCV and other computer vision libraries. This section covers integration patterns and best practices.
Transformation Matrix Format
einit returns standard 4×4 homogeneous transformation matrices:
T = np.array([
[R11, R12, R13, tx],
[R21, R22, R23, ty],
[R31, R32, R33, tz],
[0, 0, 0, 1 ]
])
This format is directly compatible with: - OpenCV’s 3D functions - Open3D transformations - PCL (Point Cloud Library) - Standard robotics libraries
Common Integration Patterns
ICP Initialization
import cv2
from einit import register_ellipsoid
# 1. Get initial transformation with einit
T_init = register_ellipsoid(src_points, dst_points)
# 2. Apply initial transformation
src_aligned = apply_transform(src_points, T_init)
# 3. Refine with OpenCV ICP
retval, T_refine, inliers = cv2.estimateAffine3D(
src_aligned.astype(np.float32),
dst_points.astype(np.float32),
confidence=0.99,
ransacThreshold=0.01
)
# 4. Combine transformations
if retval:
T_final = np.eye(4)
T_final[:3, :4] = T_refine
T_complete = T_final @ T_init
else:
T_complete = T_init
RANSAC Integration
def robust_alignment(src, dst, max_iterations=1000):
best_T = None
best_inliers = 0
for _ in range(max_iterations):
# Sample subset of points
indices = np.random.choice(len(src), min(100, len(src)), replace=False)
src_sample = src[indices]
dst_sample = dst[indices]
# Get transformation
T_candidate = register_ellipsoid(src_sample, dst_sample)
# Evaluate on full dataset
aligned = apply_transform(src, T_candidate)
distances = np.linalg.norm(aligned - dst, axis=1)
inliers = np.sum(distances < threshold)
if inliers > best_inliers:
best_inliers = inliers
best_T = T_candidate
return best_T
Multi-Scale Processing
def multiscale_alignment(src, dst, scales=[1.0, 0.5, 0.25]):
T_cumulative = np.eye(4)
for scale in scales:
# Downsample point clouds
n_points = int(len(src) * scale)
indices = np.random.choice(len(src), n_points, replace=False)
src_scale = src[indices]
dst_scale = dst[indices]
# Apply current transformation
src_transformed = apply_transform(src_scale, T_cumulative)
# Compute refinement
T_delta = register_ellipsoid(src_transformed, dst_scale)
T_cumulative = T_delta @ T_cumulative
return T_cumulative
Performance Optimization
Preprocessing for Speed
def preprocess_for_alignment(points, target_size=1000):
"""Downsample and clean point cloud for faster processing."""
if len(points) > target_size:
# Uniform downsampling
indices = np.linspace(0, len(points)-1, target_size, dtype=int)
points = points[indices]
# Remove outliers (optional)
centroid = np.mean(points, axis=0)
distances = np.linalg.norm(points - centroid, axis=1)
threshold = np.percentile(distances, 95) # Keep 95% of points
mask = distances <= threshold
return points[mask]
Batch Processing
def batch_align_clouds(src_clouds, dst_clouds):
"""Align multiple point cloud pairs efficiently."""
transformations = []
for src, dst in zip(src_clouds, dst_clouds):
# Preprocess for consistency
src_clean = preprocess_for_alignment(src)
dst_clean = preprocess_for_alignment(dst)
# Compute transformation
T = register_ellipsoid(src_clean, dst_clean)
transformations.append(T)
return transformations
Error Handling
Robust Error Checking
def safe_alignment(src, dst, fallback='identity'):
"""Perform alignment with comprehensive error handling."""
try:
# Input validation
if src.shape[0] < 4 or dst.shape[0] < 4:
raise ValueError("Need at least 4 points for alignment")
if src.shape != dst.shape:
raise ValueError("Source and destination must have same shape")
# Compute transformation
T = register_ellipsoid(src, dst)
# Validate result
if not np.allclose(T[:3, :3] @ T[:3, :3].T, np.eye(3), atol=1e-6):
raise ValueError("Computed rotation matrix is not orthogonal")
return T, True
except Exception as e:
print(f"Alignment failed: {e}")
if fallback == 'identity':
return np.eye(4), False
elif fallback == 'centroid':
# Align centroids only
t = np.mean(dst, axis=0) - np.mean(src, axis=0)
T = np.eye(4)
T[:3, 3] = t
return T, False
else:
raise
Integration with Other Libraries
import open3d as o3d
def align_with_open3d(src_pcd, dst_pcd):
# Convert to numpy arrays
src_points = np.asarray(src_pcd.points)
dst_points = np.asarray(dst_pcd.points)
# Get initial transformation
T_init = register_ellipsoid(src_points, dst_points)
# Refine with Open3D ICP
result = o3d.pipelines.registration.registration_icp(
src_pcd, dst_pcd,
max_correspondence_distance=0.1,
init=T_init
)
return result.transformation
import pcl
def align_with_pcl(src_cloud, dst_cloud):
# Extract points
src_points = src_cloud.to_array()
dst_points = dst_cloud.to_array()
# Get initialization
T_init = register_ellipsoid(src_points, dst_points)
# Use PCL's ICP with initialization
icp = src_cloud.make_IterativeClosestPoint()
converged, transform, estimate, fitness = icp.icp(dst_cloud, T_init)
return transform if converged else T_init