Welcome to DiRe-JAX's documentation! ==================================== .. image:: https://img.shields.io/badge/View-PDF-red?logo=adobe :target: https://github.com/sashakolpakov/dire-jax/blob/main/working_paper/dire_paper.pdf :alt: View PDF .. image:: https://colab.research.google.com/assets/colab-badge.svg :target: https://colab.research.google.com/github/sashakolpakov/dire-jax/blob/main/tests/dire_benchmarks.ipynb :alt: Open in Colab **DiRe-JAX** is a new dimensionality reduction package written in JAX, offering high-performance dimensionality reduction with efficient computation. Quick Start ----------- Installation ~~~~~~~~~~~~ Install the main DiRe class only: .. code-block:: bash pip install dire-jax If you also need benchmarking utilities: .. code-block:: bash pip install dire-jax[utils] Example Usage ~~~~~~~~~~~~~ .. code-block:: python from dire_jax import DiRe from sklearn.datasets import make_blobs n_samples = 100_000 n_features = 1_000 n_centers = 12 features_blobs, labels_blobs = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_centers, random_state=42) reducer_blobs = DiRe(dimension=2, n_neighbors=16, init_embedding_type='pca', max_iter_layout=32, min_dist=1e-4, spread=1.0, cutoff=4.0, n_sample_dirs=8, sample_size=16, neg_ratio=32, verbose=False,) _ = reducer_blobs.fit_transform(features_blobs) reducer_blobs.visualize(labels=labels_blobs, point_size=4) .. toctree:: :maxdepth: 2 :caption: Contents: installation usage api/modules benchmarking contributing Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`